数值计算方法要求:一、独立完成,下面已将五组题目列出,任选一组进行作答,每人只答一组题目,多答无效,100分;二、答题步骤:1.使用A4纸打印学院指定答题纸(答题纸请详见附件);2.在答题纸上使用黑色

可做奥鹏全部院校在线离线作业毕业论文QQ:3230981406 微信:aopopenfd777

发布时间:2021-09-26 12:52:45来源:admin浏览: 96 次

数值计算方法
要求:
一、        独立完成,下面已将五组目列出,任选一组进行作答,每人只答一组题目,多答无效,100分;
二、答题步骤:
1.        使用A4纸打印学院指定答题纸(答题纸请详见附件);
2.        在答题纸上使用黑色水笔按题目要求手写作答;答题纸上全部信息要求手写,包括学号、姓名等基本信息和答题内容,请写明题型、题号;
三、提交方式:请将作答完成后的整页答题纸以图片形式依次粘贴在一个Word
    文档中上传(只粘贴部分内容的图片不给分),图片请保持正向、清晰;
1.        完成的作业应另存为保存类型是“Word97-2003”提交;
2.        上传文件命名为“中心-学号-姓名-科目.doc”;
3.        文件容量大小:不得超过20MB。
提示:未按要求作答题目的作业及雷同作业,成绩以0分记!

题目如下:
第一组:
一、        计算题(共76分)
1、计算题(24分)
分别用梯形公式与Simpson公式计算 的近似值,并估计误差
2、计算题(25分)
取步长 ,求解初值问题 用改进的欧拉法求 的值;用经典的四阶龙格―库塔法求 的值。
3、计算题(27分)
用雅可比法求 的特征值
二、简述题(24分)
设 讨论雅可比和塞德尔法的收敛性






第二组:
计算题
1.        写出求解线性代数方程组   
  
的Gauss-Seidel迭代格式,并分析此格式的敛散性。(28分)
2.
(1)写出以0,1,2为插值节点的二次Lagrange插值多项式 ;
(2)以0,1,2为求积节点,建立求积分 的一个插值型求积公式,并推导此求积公式的截断误差。(41分)
3.  利用Gauss变换阵,求矩阵 的LU分解。(要求写出分解过程)
(31分)
                                                              






第三组:
一、计算题(共76分)
1、(22分)用高斯消元法求解下列方程组

2、(31分)
用雅可比方法求矩阵 的特征值和特征向量
3、(23分)
求过点(-1,-2),(1,0)(3,-6),(4,3)的三次插值多项式

二、简述题(24分)
写出梯形公式和辛卜生公式,并用来分别计算积分








第四组:
一、        计算题(共100分)
1、        (25分)
用Gauss-Seidel迭代法求解线性方程组    = ,

取x(0)=(0,0,0)T,列表计算三次,保留三位小数。

2、        (26分)
用最小二乘法求形如 的经验公式拟合以下数据:
        19        25        30        38
        19.0        32.3        49.0        73.3

3、        (22分)
求A、B使求积公式 的代数精度尽量高,并求其代数精度;利用此公式求 (保留四位小数)。
4、        (27分)
已知
        1        3        4        5
        2        6        5        4
分别用拉格朗日插值法和牛顿插值法求 的三次插值多项式 ,并求 的近似值(保留四位小数)。







第五组:
一、        计算题(共56分)
1、        (28分)
设有线性方程组 ,其中     
(1)求 分解;  
(2)求方程组的解  
(3)  判断矩阵 的正定性

2、(28分)
用列主元素消元法求解方程组
二、        更多答案下载:(www.)(共44分)

1、        (28分)
已知方程组 ,其中
(1)写出该方程组的Jacobi迭代法和Gauss-Seidel迭代法的分量形式;
(2)判断(1)中两种方法的收敛性,如果均收敛,说明哪一种方法收敛更快。

2、(16分)
使用高斯消去法解线性代数方程组,一般为什么要用选主元的技术?




作业咨询 论文咨询
微信客服扫一扫

回到顶部